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Executive Summary 
 
The objective of this effort was to investigate techniques for allowing networks composed of many hundreds, thou-
sands, or even millions of commodity computers to protect themselves against a variety of security threats. We in-
vestigated: 
 
(a) automatic software patch generation for addressing several types of software vulnerabilities and failures; 
(b) techniques to enable administrators to quickly roll out vendor-issued software patches without fear of adverse 

side-effects (e.g., system crashes due to incompatibilities); 
(c) anomaly detection (AD) techniques that will allow us to accurately and quickly identify events (attacks, or oth-

erwise anomalous behavior) warranting closer examination; and 
(d) techniques for automatically creating diverse instances of software applications such that they are immune to 

certain types of software vulnerabilities. 
 

We developed a number of system prototypes and experimentally demonstrated their effectiveness: 
 
(a) an automatic patch generation prototype that can detect previously unknown attacks and create fixes that main-

tain both integrity and availability of the target application in over 95% of cases with minimal performance 
overhead; 

(b)  a technique for allowing in situ testing of security patches without affecting the stability or functionality of the 
production system, using speculative parallel execution; 

(c) Anagram, a new content-based AD; Aeolos, a distributed intrusion detection and event correlation infrastructure; 
STAND, a training-set sanitization technique applicable to ADs requiring unsupervised training; POLYMORPH, 
an evaluation of the strength of metamorphic engines demonstrating the infeasibility of signature-based filtering 
defenses; and 

(d) an integrated software diversification system based on Instruction Set Randomization. 
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Summary of findings 
 
In summary, our significant technical findings in each area are: 
 

 (a) Automatic Patch Generation 
 
Our work demonstrated that it is possible to construct a software self-healing mechanism that identifies new in-
stances of known classes of failures (e.g., buffer overflows, input-drive application crashes), creates candidates fix-
es, tests them in an isolated environments, and (if successful) applies them to the production system. The core intui-
tion behind our work was the notion of error virtualization: we treat code blocks (specifically, func-
tions/subroutines) as transactions that may fail. If a failure is observed, we rollback the transaction by reversing the 
effects of its operation (i.e., undo memory changes and I/O operations) and force program execution to take a differ-
ent path. Forcing a different path to be taken is achieved by pretending that the failed code block returned with an 
error code (e.g., "return -1;" in C). Valid error codes to be used, as well as the locations to which program execution 
needs to be restored, are determined through static analysis of the code and through offline testing/fuzzing. Initial 
fault detection (first instance of a failure) is determined through use of honeypots or lightweight attack/failure sen-
sors; upon detecting a failure/attack, the system automatically attempts to create and test fixes implementing the 
transactional processing of the code that failed by adding supervisory code around it. The tests involve replaying the 
malicious traffic, as well as running a battery of pre-defined tests (software- and site-specific). If a successful fix is 
found, the administrator is notified; optionally, the system can be configured to roll out the fix immediately, without 
human supervision. Fixes can be applied both to source code (through automatic code rewriting) and to program 
binaries. 
 
In addition, we have developed extensions to the Clark-Wilson integrity model to enable integrity recovery based on 
a policy. This work is intended to provide some assurances with respect to the behavior of the healed application, by 
specifying specific steps that the supervisory framework has to undertake (or avoid) in the process of recovering 
from a failure. Currently, such policies must be manually specified by some entity (programmer, administrator, user, 
...); the focus of future work should be on automatically determining such policies based on program analysis 
(whether static or dynamic). 
 
We experimentally determined that program availability and integrity are maintained in over 95% of cases where 
such fault-handling is performed. The overhead of the rollback mechanism can be as low as 0%, and in all cases we 
encountered (testing with both real and synthetic bugs/failures) was in the 5% range. 
 

 (b) Better Patch Management 
 
Band-aid Patching is a new approach for testing application patches prior to definitive deployment. Using binary 
runtime injection techniques, we modify binaries so that when program execution reaches a program segment that 
has been affected (modified) by an issued patch, the program “forks” speculative execution threads that cannot inter-
fere with each other. The output of these threads is examined to discover misbehavior. Our system contains the ef-
fects of any misbehavior by unrolling their execution results, and selecting from among the non-misbehaving execu-
tion threads. Often, identifying the misbehaving thread is easy: based on its actions (e.g., causing a program crash). 
Such problems may occur in either the original or the updated version of the code (or,if we are unlucky, in both).  
 
The main advantage of our approach lies in its ability to allow for simple dynamic patches to be tested side-by-side 
with production-level application state. The output created by these “patch threads” can be then compared, to pro-
vide some guarantee over the correctness of the computation. Since there is a cost associated with our approach, our 
scheme works best when the patches are relatively small in size, or when they affect code that is not in the critical 
path of the application. Generally, security and stability patches fall in this category. Although our scheme could be 
applied against any type of patch (e.g., large patches introducing new functionality), the cost and complexity asso-
ciated would be relatively high. 
 
To validate our approach, we developed a proof-of-concept implementation of Band-aid  
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Patching using source-to-source transformations and the dyninst runtime instrumentation tool. Specifically, we used 
dyninst to insert instrumentation trampolines that point to the different versions of the patches under test, and in-
strumentation that examines and compares the output of these patches. The type of patches that can be applied can 
range from simple logic bug fixes to testing new vulnerability protection mechanisms. For more complex updates, 
i.e., where changes to function prototypes and type definitions are required, our approach could be combined with 
more sophisticated dynamic software update techniques. Our technique uses only the vendor-issued patch and can 
be applied with little or no intervention by users or administrators. In our work, we investigated some of the issues 
associated with our approach and identify areas for future investigation.  
 

 (c) Artificial Diversity 
 
We developed an ISR-based protection system for network-facing applications. Our scheme represents a hybrid ap-
proach to host security that prevents binary code injection attacks. It incorporates three major components: an ano-
maly-based classifier, a signature-based filtering scheme, and a supervision framework that employs Instruction Set 
Randomization (ISR). Since ISR prevents code injection attacks and can also precisely identify the injected code, we 
can tune the classifier and the filter via a learning mechanism based on this feedback. Capturing the injected code 
allows our system to construct signatures for zero-day exploits. The filter can discard input that is anomalous or 
matches known malicious input, effectively protecting the application from additional instances of an attack – even 
zero-day attacks or attacks that are metamorphic in nature. Our system does not require a known user base and can 
be deployed transparently to clients and with minimal impact on servers. Our prototype protects HTTP servers, but 
can be applied to a variety of server and client applications.  
 
One of the major contributions of this work is the use of a practical form of ISR. The basic premise of ISR is to pre-
vent code injection attacks from succeeding by creating unique execution environments for individual processes. 
Code injection is not limited to overflowing stack buffers or format strings. Other injection vectors include web 
forms that allow arbitrary SQL expressions, CGI scripts that invoke shell programs based on user input, and log files 
containing character sequences capable of corrupting the terminal display. Our x86 emulator can selectively de-
randomize portions of an instruction stream, effectively supporting two different instruction sets at the same time. 
Various processors support the ability to emulate or execute other instruction sets. These abilities could conceivably 
be leveraged to provide hardware support for ISR. For example, the Transmeta Crusoe chip employs a software 
layer for interpreting code into its native instruction format. The PowerPC chip employs “Mixed-Mode” execution 
for supporting the Motorola 68k instruction set. Likewise, the ARM chip can switch freely between executing its 
regular instruction set and executing the Thumb instruction set. A processor that supports ISR could use a similar 
capability to switch between executing regular machine instructions and randomized machine instructions. In fact, 
this is almost exactly what STEM (Selective Transactional Emulation)  does in software. Having hardware support 
for ISR would obviate the need for (along with the performance impact of ) software-level ISR.  
 
Our systems receive feedback from the emulator that monitors the execution of a vulnerable application. If the emu-
lator tries to execute injected (non-randomized) code, it catches the fault and notifies the classifier and filter. It can 
then terminate and restart the process, or simulate an error return from the current function. While our prototype 
system employs ISR, there are many other types of program supervision that can provide useful information. Each 
could be employed in parallel to gather as much information as possible. These approaches include input taint track-
ing, program shepherding, and compiler-inserted checks. One advantage of our system’s feedback mechanism is that 
it can identify with high confidence the binary code of the attack. 
 

 (d) Distributed Anomaly Detection 
 
We developed Anagram, a content anomaly detector that models a mixture of high-order n-grams (n > 1) designed 
to detect anomalous and “suspicious” network packet payloads. By using higher-order n-grams, Anagram can detect 
significant anomalous byte sequences and generate robust signatures of validated malicious packet content. The 
Anagram content models are implemented using highly efficient Bloom filters, reducing space requirements and 
enabling privacy-preserving cross-site correlation. The sensor models the distinct content flow of a network or host 
using a semi-supervised training regimen. Previously known exploits, extracted from the signatures of an IDS, are 
likewise modeled in a Bloom filter and are used during training as well as detection time. We demonstrated that 
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Anagram can identify anomalous traffic with high accuracy and low false positive rates. Anagram’s high-order n-
gram analysis technique is also resilient against simple mimicry attacks that blend exploits with “normal” appearing 
byte padding, such as the blended polymorphic attack recently demonstrated. We also developed randomized n-
gram models, which further raises the bar and makes it more difficult for attackers to build precise packet structures 
to evade Anagram even if they know the distribution of the local site content flow. Finally, Anagram’s speed and 
high detection rate makes it valuable not only as a standalone sensor, but also as a network anomaly flow classifier 
in an instrumented fault-tolerant host-based environment; this enables significant cost amortization and the possibili-
ty of a “symbiotic” feedback loop that can improve accuracy and reduce false positive rates over time.  
 
In addition, we developed a technique for more accurately training anomaly detectors (including Anagram). The 
efficacy of Anomaly Detection (AD) sensors depends heavily on the quality of the data used to train them. Artificial 
or contrived training data may not provide a realistic view of the deployment environment. Most realistic data sets 
are dirty; that is, they contain a number of attacks or anomalous events. The size of these high-quality training data 
sets makes manual removal or labeling of attack data infeasible. As a result, sensors trained on this data can miss 
attacks and their variations. We extended the training phase of AD sensors (in a manner agnostic to the underlying 
AD algorithm) to include a sanitization phase. This phase generates multiple models conditioned on small slices of 
the training data. We used these “micro-models” to produce provisional labels for each training input, and we com-
bined the micro-models in a voting scheme to determine which parts of the training data may represent attacks. Our 
results suggest that this phase automatically and significantly improves the quality of unlabeled training data by 
making it as “attack-free” and “regular” as possible in the absence of absolute ground truth. We also showed how a 
collaborative approach that combines models from different networks or domains can further refine the sanitization 
process to thwart targeted training or mimicry attacks against a single site.  
 
We also developed Aeolos, a new framework for Collaborative Distributed Intrusion Detection, or CIDS that relies 
on the combination of a decentralized, robust and scalable P2P architecture, paired with compression algorithms, 
anonymity and privacy mechanisms to detect attacks accurately and rapidly while encouraging participation.  Our 
insight is the use of a hierarchical distributed hash table (HDHT) which scales well for large-scale alert dissemina-
tion; the use of multiple federations of HDHTs to ensure resiliency, provide verifiability and detect uncooperative 
peers; Bloom filters for effective data privacy and an efficient source of keys for our HDHT; and anonymous-but-
differentiable cryptographic signatures to preserve anonymity.  Finally, our results show that these techniques are 
effective for a variety of alert types and rates, ranging from simple IP-based threat determination to more sophisti-
cated payload intrusion detection approaches. 
 
Finally, we developed a quantitative analysis of the strengths and limitations of shell-code polymorphism and consi-
dered its impact on current intrusion detection practice. We focused on the nature of shell-code decoding routines. 
The empirical evidence we gathered helps show that modeling the class of self–modifying code is likely intractable 
by known methods, including both statistical constructs and string signatures. In addition, we developed measures 
that provide insight into the capabilities, strengths, and weaknesses of polymorphic engines. In order to explore 
countermeasures to future polymorphic threats, we showed how to improve polymorphic techniques and create a 
proof-of-concept engine expressing these improvements. Our results indicate that the class of polymorphic behavior 
is too greatly spread and varied to model effectively. Our analysis also supplies a novel way to understand the limi-
tations of current signature–based techniques. We conclude that modeling normal content is ultimately a more prom-
ising defense mechanism than modeling malicious or abnormal content.  
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Detailed technical findings 
 
In more detail, our technical findings in each area: 
 

 (a) Automatic Patch Generation 
 
We developed ASSURE, a system that provides Automatic Software Self-healing Using REscue points. ASSURE 
introduces rescue points, to retrofit legacy applications with exception-handling capabilities that mimic system be-
havior under anticipated error conditions. This behavior is induced to recover from unanticipated software faults 
while maintaining system integrity and availability. Rescue points are locations in existing application code for han-
dling programmer-anticipated failures which are automatically repurposed and tested for safely enabling general 
fault recovery. When a fault occurs at an arbitrary location in the program, ASSURE restores execution to the clos-
est rescue point and induces the program to recover execution by virtualizing and using its existing error-handling 
facilities. 
 
Rescue points virtualize error handling by creating a mapping between the (potentially infinite) set of errors that 
could occur during a program’s execution (e.g., a detected buffer-overflow attack, or an illegal memory-dereference 
exception) and the limited set of errors that can be handled by the program’s code. Thus, a failure that would cause 
the program to crash is translated into a “return with an error” from an error-handling function along the execution 
path in which the fault occurred. By reusing existing error-handling facilities and automatically testing them before 
use in production code, rescue points can reduce the chance of unanticipated execution paths, thereby making recov-
ery more robust. Rescue points do not simply mask errors. Instead, they “teleport” the faults to locations that are 
known or suspected, with high probability, to handle faults correctly (including correct program-state cleanup). 
 
ASSURE is designed around an Observe Orient Decide Act (OODA) feedback loop. ASSURE first profiles an ap-
plication offline using fuzzing to identify candidate rescue points. The intuition is that there exists a set of code loca-
tions created and tested by the application developers that are routinely used to handle expected errors (e.g., mal-
formed URLs in a web server). ASSURE then uses a set of lightweight software probes to monitor the application 
during its production use for specific types of faults; a variety of fault monitors can be used. Upon detection of a 
fault for the first time, ASSURE uses a replica of the application to determine which candidate rescue point can be 
most effectively used. The selected candidate rescue point is then implemented using exception handling and an 
operating system checkpoint-restart mechanism that handles multi-process and multi-threaded applications. AS-
SURE confirms that it has repaired the fault by re-running the application against the event sequence that apparently 
caused the failure, as well as against already known good and bad input. Upon success, ASSURE uses a runtime 
binary injection tool to insert the rescue point into the application running on the production server. When the fault 
occurs again on the production server, the application uses the rescue point to roll back state to the rescue point, 
where the program is forced to return an error, imitating the behavior observed during fuzzing. The system is de-
signed to operate without human intervention to minimize reaction time, and does not require access to application 
source code. The end result is automatic short-term healing of software services from what were previously un-
known and unforeseen software failures, maintaining both system integrity and availability.  
 
We have implemented an ASSURE Linux prototype that operates without application source code and without base 
operating system kernel changes. To demonstrate its effectiveness, we have evaluated our prototype on a wide range 
of real-world server applications and bugs. We focused on server applications because they typically have higher 
availability requirements and also tend to have short error-propagation distances that lend themselves to our ap-
proach. Our experimental results show that ASSURE identified and used rescue points to successfully recover from 
all of the bugs tested. Unlike other approaches, our evaluation validated ASSURE’s ability to recover in the pres-
ence of bugs for application deployments in typical multi-process and multi-threaded configurations while running 
widely used workloads for measuring performance. Our performance measurements showed that ASSURE recov-
ered from faults in just a few milliseconds for all applications and incurred less than 10% performance overhead 
during normal execution. Furthermore, our results show that ASSURE provides automatic and tested self-healing of 
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legacy applications in a few seconds to minutes depending on the level of testing desired, orders of magnitude faster 
than current human-driven patch deployment methods.  
 
While our work in the self-healing space demonstrated the feasibility of the basic concept, these techniques face a 
few obstacles before they can be deployed to protect and repair legacy systems, production applications, and COTS 
(Commercial Off–The–Shelf) software. Executing through a fault in this fashion involves overcoming several ob-
stacles. In particular, the semantics of program execution must be maintained as closely as possible to the original 
intent of the application’s author. To that end, we introduced a repair policy to guide the semantics of the healing 
process. 
 
Achieving a semantically correct response remains a key problem for self-healing systems. Executing through a 
fault or attack involves a certain amount of risk. Even if software could somehow ignore the attack itself, the best 
sequence of actions leading back to a safe state is an open question. The exploit may have caused a number of 
changes in state that corrupt execution integrity before an alert is issued. Attempts to self-heal must not only stop an 
exploit from succeeding or a fault from manifesting, but also repair execution integrity as much as possible. Howev-
er, self-healing strategies that execute through a fault by effectively pretending it can be handled by the program 
code or other instrumentation may give rise to semantically incorrect responses. In effect, self-healing may provide a 
cure worse than the disease. The code snippet below illustrates a specific example: an error may exist in a routine 
that determines the access control rights for a client. If this fault is exploited, a self-healing technique like error vir-
tualization may return a value that allows the authentication check to succeed. This situation occurs precisely be-
cause the recovery mechanism is oblivious to the semantics of the code it protects.  
 
int login(UCRED creds)  
{  
  int authenticated = check_credentials(creds);  
  if(authenticated) return login_continue();  
  else return login_reject();  
}  
 
int check_credentials(UCRED credentials)  
{  
  strcpy(uname, credentials.username);  
  return checkpassword(lookup(uname), credentials);  
}  
 
One solution to this problem relies on annotating the source code to (a) indicate which routines should not be 
“healed” or (b) to provide appropriate return values for such sensitive functions, but we find these techniques unap-
pealing because of the need to modify source code. Since source-level annotations serve as a vestigial policy, we 
articulated a way to augment self-healing approaches with the notion of repair policy. A repair policy (or a recovery 
policy – we use the terms interchangeably) is specified separately from the source code and describes how execution 
integrity should be maintained after an attack is detected. Repair policy can provide a way for a user to customize an 
application’s response to an intrusion attempt and can help achieve a completely automated recovery. 
 
We provided a theoretical framework for repair policy by extending the Clark-Wilson Integrity Model (CW)  to in-
clude the concepts of (a) repair and (b) repair validation. CW is ideally suited to the problem of detecting when con-
straints on a system’s behavior and information structures have been violated. The CW model defined rules that go-
vern three major constructs: constrained data items (CDI), transformation procedures (TP), and integrity verification 
procedures (IVP). An information system is composed of a set of TPs that transition CDIs from one valid state to 
another. The system also includes IVPs that measure the integrity of the CDIs at various points of execution.  
 
Although a TP should move the system from one valid state to the next, it may fail for a number of reasons (incor-
rect specification, a vulnerability, hardware faults, etc.). The purpose of an IVP is to detect and record this failure. 
CW does not address the task of returning the system to a valid state or formalize procedures that restore integrity. 
In contrast, repair policy focuses on ways to recover after an unauthorized modification. Our extensions supplements 
the CW model with primitives and rules for recovering from a policy violation and validating that the recovery was 
successful.  
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STEM interprets repair policy to provide a mechanism that can be selectively enforced and retrofitted to the pro-
tected application without modifying its source code (although mapping constraints to source-level objects assists in 
maintaining application semantics). As with most self-healing systems, we expect the repairs offered by this “beha-
vior firewall” to be temporary constraints on program behavior — emergency fixes that await a more comprehensive 
patch from the vendor. One advantage of repair policy is that an administrator can “turn off ” a broken repair policy 
without affecting the execution of the program — unlike a patch.  
 
Repair policy is specified in a file external to the source code of the protected application and is used only by STEM 
(i.e., the compiler, the linker, and the OS are not involved). This file describes the legal settings for variables in an 
aborted transaction. The basis of the policy is a list of relations between a transaction and the CDIs that need to be 
adjusted after error-virtualization, including the return address and return value. A complete repair policy is a wide-
ranging topic; in our work, we considered a simple form that:  
 
1. specifies appropriate error virtualization settings to avoid an incorrect return value that causes problems like the 
one illustrated earlier 
 
2. provides memory rollback for an aborted transaction  
 
3. sets memory locations to particular values  
 
Below we show a sample policy for our running example. The first statement defines a symbolic value. The latter 
three statements define an IVP, RP, and TP. The IVP defines a simple detector that utilizes STEM’s shadow stack. 
The RP sets the return value to a semantically correct value and indicates that memory changes should be undone, 
and the TP definition links these measurement and repair activities together. An RP can contain a list of asserted 
conditions on CDIs that should be true after self-healing completes. The example illustrates the use of the special 
variable ’rvalue (the apostrophe distinguishes it from any CDI named rvalue). This variable helps customize vanilla 
error virtualization to avoid problems similar to the one in our code snippet. 
 
symval AUTHENTICATION_FAILURE = 0;  
ivp MeasureStack :=: (’raddress==’shadowstack[0]);  
rp FixAuth :=: (’rvalue==AUTHENTICATION_FAILURE), (rollback);  
tp check_credentials  
    &MeasureStack :=: &FixAuth;  
 
 

 (b) Better Patch Management 
 
Conceptually, our approach can be described by two components: an execution module and a decision module. The 
execution module provides the speculative execution environment where patches can be applied to service instances. 
It is possible that multiple such instances run in parallel while being monitored by the execution environment for 
successful termination or for exception failures. The module provides a recovery mechanism to maintain non-stop 
service execution in the presence of faults. The decision module consists of a set of detection elements that examine 
the output (state changes) generated by individual executions, process the results, and reach a decision. The module 
must be invoked whenever parallel running instances of services reach predefined points in their execution, or when 
an exception is generated.  
 
The execution module designates the mechanism for the application of patches to service instances. Ideally, the 
patching mechanism should be able to: (i) apply patches to running service instances with little or no down-time, (ii) 
allow for the application of arbitrary patches (i.e., not just binary-compatible), (iii) have the ability to apply patches 
even in the absence of source code, (iv) provide the ability to insert multiple patches at specific program locations, 
and (v) monitor multiple speculative executions for successful completion or faults.  
 
There are a few instrumentation injection techniques that can be employed for the purposes of our approach.  
 
• Binary translation, where the tool adds instrumentation to a compiled binary, e.g., ATOM 
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• Runtime instrumentation, where the code is instrumented just prior to execution, e.g., PIN 
 
• Runtime injection. This is a more light-weight approach than runtime instrumentation, where the code is modified 
at runtime by inserting jumps to helper functions, e.g., dyninst 
 
Runtime instrumentation provides the most flexible platform, at the cost of higher performance overhead. For exam-
ple PIN, a runtime injection tool, uses a dynamic translation to intercept and make changes to runtime code, which 
typically adds a 2X overhead. Dyninst uses a runtime injection approach that adds minimal overhead to the applica-
tion but requires that patches maintain binary compatibility. The issue of binary compatibility is of minor impor-
tance given the fact that the majority of vulnerability patches usually involve minimal changes to the underlying 
source code. In fact, in order to provide any sort of type-safety on dynamic software updating, one would have to 
use a language that is dynamic-update aware. The overhead of executing the inserted instrumentation is comparable 
to that of a function call and primarily depends on how efficiently registers can be saved and restored during execu-
tion. 
 
The decision module is responsible for detecting variations, and subsequently violations of execution state. Deter-
mining the correctness of the resulting execution is based on a combination of policy and heuristics. Working under 
the assumption that the base implementation is an instance of “correct” execution, we can derive deviations from 
this model as potentially problematic. The following two example scenarios illustrate the range of policies that can 
be used by our approach:  
 
1. Correct base instance: In this context, the assumption is that the base implementation defines the measure of “cor-
rectness” for the system. There are numerous ways to determine correctness, one being empirical observation. For 
example, telephony switches are periodically retrofitted with vulnerability patches that should not alter their normal 
operation (e.g., how calls are routed). Patches to such systems must characterize functional deviation as potentially 
problematic.  
 
2. Well defined end-state: In cases where well defined invariants and specifications of the result state are available, 
execution output can be checked against those constraints. For example, database systems have well-defined data 
constraints, such as the range of values in fields.  
 
Several mechanisms can be combined as part of our Band-aid Patch architecture. Our goal is to identify differences 
in state that might occur during different executions and to detect violations to system policy as defined above. The 
two primary candidates for measuring deviation in execution state are memory traces and I/O transactions. A num-
ber of techniques can be applied to memory views generated by the different executions depending on the characte-
ristics of the application and the granularity of information we are trying to extract. Comparing the full memory 
layout is the simplest approach, but generates copious amounts of information. Context-aware memory “diffs” can 
be used to filter out superfluous memory information. Memory management at the library/system-call level can be 
used to fingerprint each execution. Finally, measuring variation in inter/intra–function call-graphs can provide addi-
tional hints on the effects of program semantics.  
 
When considering I/O transactions, the basic concept is to fork filesystem views for each execution. At completion 
time, it is possible to compare file system views for inconsistencies, e.g., using mechanisms such as the versioning 
file system. Discrepancies and inconsistencies can be handled as indications of anomalous execution. Similarly, for 
network I/O, operations can be filtered and compared with the anticipated behavior, defined by the appropriate poli-
cy or by an external anomaly detector.  
 
The decision component can be injected at specific locations in the code, similar to the patch insertion described 
earlier. The figure below illustrates the concept. In the example, the execution module is invoked at function foo(), 
allowing for the simultaneous deployment of two patches. At that time, two more instances of the service are 
created. Execution continues normally for all instances until we reach (i) a predefined point in the execution, or (ii) 
an exception is raised.  
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Figure 1 - Band-aid Patch Decision 

 
In our prototype implementation, we chose to use runtime injection for patch insertion. We used dyninst due to its 
low runtime overhead and its ability to attach and detach from already running processes. 
 
The updates supported by our prototype happen at function-level granularity, and come into effect on the next invo-
cation of the replaced function. The different versions of the patches to be tested are created as a dynamic library 
that can be linked to the application at runtime. The function where the Band-aid Patching will be initiated in is in-
strumented to include calls to the patches to be tested on function entry.  
 
Unfortunately, the obvious choice of “forking” a different process for each execution threat carries the stigma asso-
ciated with changing process information; to avoid breaking program semantics, special care needs to be placed on 
programs that rely on process ID information. Using dyninst, we can intercept calls to getpid() and its derivatives to 
return the appropriate process ID. However, this solution is no panacea as the process ID might have been commu-
nicated to other parts of the application prior to the patch deployment. A possible solution is to add a thin virtualiza-
tion layer that maps all process IDs to virtual values. An alternative approach would be to execute the different ver-
sions of a patch in succession. While this approach is elegant in its simplicity, it means that we can only explore the 
effects of a patch within the confines of the function, i.e., we would not be able to examine possible side-effects ex-
hibited by a patch farther down in program execution. We also cannot take advantage of hardware facilities, such as 
multiple processors/cores, that could minimize the overhead of our scheme. For our particular implementation we 
employ the sequential patch approach using a tool we have previously developed, STEM. The decision component 
is currently implemented as an application-specific component that can be injected at particular program locations 
using the mechanism described previously. For our prototype, we used STEM to detect general faults and memory 
violations. If a patch does not introduce a failure during execution, execution is allowed to continue. If the patch 
causes a failure, execution continues with the unpatched version of the code.  
 

 (c) Artificial Diversity 
 
The design of our system is based on two major components: a filtering proxy and an application supervision 
framework. A major goal of the design is to keep the system modular and deployable on a single host. The figure 
below shows a high-level view of this design. The protected application can be either a server waiting for requests or 
a client program receiving input. Input to a client program or requests to a server are passed through the filtering 
proxy and dropped if deemed malicious. If the supervision framework detects something wrong with the protected 
application, it signals the filter to update its signatures and models. Although server replies and outgoing client traf-
fic can also be modeled and filtered, our current implementation does not perform this extra step. Outgoing filtering 
is useful in protecting a client application by stopping information leaks or the spread of self-propagating malware.  
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The function of the proxy is to grade or score the input and optionally drop it. The proxy is a hybrid of the two major 
classification schemes, and its subcomponents reflect this dichotomy. A chain of signature-based filters can score 
and drop a request if it matches known malicious data, and a chain of anomaly-based classifiers can score and drop 
the input if it is outside the normal model. Either chain can allow the request to pass even if it is anomalous or 
matches previous malicious input. The default policy for our prototype implementation is to only drop requests that 
match a signature filter. Requests that the anomaly classifier deems suspicious are copied to a cache and forwarded 
on to the application. We adopt this stance to avoid dropping requests that the anomaly component mislabels (false 
positives). The current implementation only drops requests that have been confirmed to be malicious to the protected 
application and requests that are closely related to such inputs.  
 
The function of the application supervision framework is to provide a way to stop an exploit, automatically repair 
the exploited vulnerability, and report information about an exploit back to the filters and classifiers. Similar to the 
filtering and classification chains, the supervision framework could include a number of host-based monitors to 
provide a wide array of complementary feedback information to the proxy. Our prototype implementation is based 
on one type of monitor (ISR) and will only provide feedback information related to code-injection attacks. Many 
other types of attacks are possible, and whether something is an attack or not often depends on context. Our design 
allows for an array of more complicated monitors. STEM allows the application to recover from a code injection 
attack by simulating an error return from the emulated function after notifying the proxy about the injected code.  
 
We assume a threat model that closely matches that of previous ISR efforts. Specifically, we assume that an attacker 
does not have access to the randomized binary or the key used to effect achieve this randomization. These objects 
are usually stored on a system’s disk or in system memory; we assume the attacker does not have local access to 
these resources. In addition, the attacker’s intent is to inject code into a running process and thereby gain control 
over the process by virtue of the injected instructions. ISR is especially effective against these types of threats 
because it interferes with an attacker’s ability to automate the attack. The entire target population executes binaries 
encoded under keys unique to each instance. A successful breach on one machine does not weaken the security of 
other target hosts. 
 
While the design of our system is quite flexible, the nature of host-based protection and our choices for a prototype 
implementation impose several limitations. First, host-based protection mechanisms are thought to be difficult to 
manage because of the potential scale of large deployments. Outside the enterprise environment, home users are 
unlikely to have the technical skill to monitor and patch a complicated system. We purposefully designed our system 
to require little management beyond installation and initial training. PayL (payload anomaly detector) can perform 
unsupervised training. One task that should be performed during system installation is the addition of a firewall rule 
that redirects traffic aimed at the protected application to the proxy and only allows the proxy to contact the 
protected application. Second, the performance of such a system is an important consideration in deployment. If the 
cost is deemed too high, the system can still be deployed as a honeypot or a “twin system” that receives a copy of 
input meant for another host. Third, the proxy should be as simple as possible to promote confidence in its code-base  

Figure 1  - General Architecture of Feedback Learning Intrusion System (FLIPS) 
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that it is not susceptible to the same exploits as the protected application. We implement our proxy in Java, a type-
safe language that is not vulnerable to the same set of binary code injection attacks as a C program. Our current im-
plementation only considers HTTP request lines. Specifically, it does not train or detect on headers or HTTP entity 
bodies. Therefore, it only protects against binary code injection attacks contained in the request line. However, noth-
ing prevents the scope of training and detecting from being expanded, and other types of attacks can be detected at 
the host.  
 
Our supervision framework is an application-level library that provides an emulator capable of switching freely be-
tween de-randomizing the instruction stream and normal execution of the instruction stream on the underlying 
hardware. 
 
STEM is an x86 emulator that can be selectively invoked for arbitrary code segments, allowing us to mix emulated 
and non-emulated execution inside the same process. The emulator lets us (a) monitor for de-randomization failures 
when executing the instruction, (b) undo any memory changes made by the code function inside which the fault oc-
curred, and (c) simulate an error return from said function (i.e., the error virtualization technique developed as part 
of the Automatic Patch Generation thrust of this project). One of our key assumptions is that we can create a map-
ping between the set of errors and exceptions that could occur during a program’s execution and the limited set of 
errors that are explicitly handled by the program’s code. 
 
The main loop of the emulator fetches, decodes, executes, and retires one instruction at a time. Before fetching an 
instruction, de-randomization takes place. Since the x86 architecture contains variable-length instructions, translat-
ing enough bytes in the instruction stream is vital for the success of decoding. Otherwise, invalid operations may be 
generated. To simplify the problem, we assume the maximum length (16 bytes) for every instruction. For every ite-
ration of the loop, 16-bit words are XOR’d with a 16-bit key and copied to a buffer. The fetch/decode function reads 
the buffer and extracts one instruction. The program counter is incremented by the exact length of the processed 
instruction. In cases where instructions are fifteen bytes or less, unnecessary de-randomization takes place, but this 
is an unavoidable side-effect of variable-length instructions. If injected code resides anywhere along the execution 
path, the XOR function will convert it to an illegal opcode or an instruction which will access an invalid memory 
address. If an exception occurs during emulation, STEM notifies the proxy of the code at the instruction pointer. 
STEM captures 1KB of code and opens a simple TCP socket to the proxy (the address and port of the feedback me-
chanism are included in the startup options). STEM then simulates an error return from the function it was invoked 
in. 
 
We evaluated the performance impact of STEM by instrumenting the Apache web server and performing micro-
benchmarks on some shell utilities. We chose the Apache flood_httpd testing tool to evaluate how quickly both the 
non-emulated and emulated versions of Apache would respond and process requests. In our experiments, we chose 
to measure performance by the total number of requests processed, as reflected in the figure below. The value for 
total number of requests per second is extrapolated (by flood ’s reporting tool) from a smaller number of requests 
sent and processed within a smaller time slice; the value should not be interpreted to mean that our Apache instances 
actually served some 6,000 requests per second.  
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Figure 3 - Performance Of The System Under Various Levels Of Emulation 

 
We selected some common shell utilities and measured their performance for large workloads running both with and 
without STEM. For example, we issued an ’ls -R’ command on the root of the Apache source code with both stderr 
and stdout redirected to /dev/null in order to reduce the effects of screen I/O. We then used cat and cp on a large file 
(also with any screen output redirected to /dev/null). The following table shows the result of these measurements. As 
expected, there is a large impact on performance when emulating the majority of an application. Our experiments 
demonstrate that only emulating potentially vulnerable sections of code offers a significant advantage over emula-
tion of the entire system. 
 
 

Test Type  Trials  Mean (s)  Std. Dev.  Min  Max  Instr. Emulated 

ls (non‐emu)  25  0.12  0.009  0.121  0.167  0 
ls (emu)  25  42.32  0.182  42.19  43.012  18,000,000 

cp (non‐emu)  25  16.63  0.707  15.8  17.61  0 
cp (emu)  25  21.45  0.871  20.31  23.42  2,100,000 

cat (non‐emu)  25  7.56  0.05  7.48  7.65  0 
cat (emu)  25  8.75  0.08  8.64  8.99  947,892 

Figure 4 - Microbenchmark Performance Times For Various Command Line Utilities 
 
 
To demonstrate the operation of the system, we inserted a synthetic code injection vulnerability into Apache. The 
vulnerability was a simple stack-based overflow of a local fixed-size buffer. The function was protected with STEM, 
and we observed how long it took our system to stop the attack and deploy a filter against further instances.  
 
To test the end-to-end functionality, we directed two streams of attack instances against Apache through our proxy. 
We first sent a stream of 67 identical attack instances and then followed this with 22 more attacks that included 
slight variations of the original attack. In the first attack stream, our system successfully blocked 61 of the 67 attack 
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instances. It let the first six instances through before STEM had enough time to feedback to our system. It took 
roughly one second for our system to start blocking the attacks. After that, each subsequent identical attack instance 
was blocked by the direct match filter. The second attack stream contained 22 variations of the original. The LCS 
filter (with a threshold of 60%) successfully blocked twenty of these. This result provides some evidence that our 
approach can stop metamorphic attacks. 
 

(d) Distributed Anomaly Detection 
 
ANAGRAM: Anagram introduced the use of Bloom filters and a binary-based detection model. Anagram does not 
compute frequency distributions of normal content flows; instead, it trains its model by storing all of the distinct n-
grams observed during training in a Bloom filter without counting the occurrences of these n-grams. Anagram also 
stores n-grams extracted from known malicious packets in a second bad content Bloom filter, acquired by extracting 
n-grams from openly available worm detection rules, such as the latest Snort rulesets. At detection time, packets are 
scored by the sensor on the basis of the number of unobserved n-grams the packet contains. The score is weighted 
by the number of malicious n-grams it contains as well. We demonstrated that this semi-supervised strategy attains 
remarkably high detection and low false positive rates, in some cases 100% detection with less than 0.006% false 
positive rate (per packet).   
 
The use of Bloom filters makes Anagram memory and computationally efficient and allows for the modeling of a 
mixture of different sizes of n-grams extracted from packet payloads, i.e., an Anagram model need not contain sam-
ples of a fixed size gram. This strategy is demonstrated to exceed PAYL (our previous AD) in both detection and 
false positives rates. Furthermore, Anagram’s modeling technique is easier to train, and allows for the estimation of 
when the sensor has been trained enough for deployment. The Bloom filter model representation also provides the 
added benefit of preserving the privacy of shared content models and alerts for cross-site correlation.  
                                                         
Of particular interest is that Anagram is shown to be robust against existing mimicry attack approaches. We demon-
strated Anagram’s ability to counter the simple mimicry attacks levied against PAYL. Furthermore, Anagram is 
designed to defeat training and mimicry attacks by using randomized n-gram modeling. The approach presented 
raises the bar against the enemy, making it far more difficult to design an n-gram attack against Anagram. By ran-
domizing the portion of packets that Anagram extracts and models, mimicry attackers cannot easily guess how and 
where to pad malicious content to avoid detection. We also made use of a feedback loop between the Anagram sen-
sor and host-based detectors, thereby updating Anagram models over time and improving its detection performance. 
Thus, the combination of model randomization and a feedback loop makes it more difficult to evade detection by 
training and mimicry attacks. 
 
While higher order n-grams contain more information about payloads, the feature space grows exponentially as n 
increases. Comparing an n-gram frequency distribution against a model is infeasible since the training data is simply 
too sparse; the length of a packet is too small compared to the total feature space size of a higher-order n-gram. One 
TCP packet may contain only a thousand or so n-grams, while the feature space size is 256n. Clearly, with increas-
ing n, generating sufficient frequency statistics to estimate the true empirical distribution accurately is simply not 
possible in a reasonable amount of time. In Anagram, we therefore do not model the frequency distribution of each 
n-gram. Rather, we observe each distinct n-gram seen in the training data and record each in a space efficient Bloom 
filter. Once the training phase terminates, each packet is scored by measuring the number of n-grams it did not ob-
serve in the training phase. Hence, a packet is scored by the following formula, where Nnew is the number of new n-
grams not seen before and T is the total number of n-grams in the packet: Score = Nnew / T � [0,1]. At first glance, 
the frequency-based n-gram distribution may contain more information about packet content; one might suspect it 
would model data more accurately and perform better at detecting anomalous data, but since the training data is 
sparse, this alternative “binary-based model” performs significantly better than the frequency-based approach given 
the same amount of training data.   
 
We analyzed the network traffic for the Columbia Computer Science website and, as expected, a small portion of the 
n-grams appear frequently while there is a long “tail” of n-grams that appear very infrequently. Since a significant 
number of n-grams have a small frequency count, and the number of n-grams in a packet is very small relative to the 
whole feature space, the frequency-distribution model incurs relatively high false positives. Thus, the binary-based 
model (simply recording the distinct n-grams seen during training) provides a reasonable estimate of how “normal” 
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a packet may be. This is a rather surprising observation, and works very well in practice.  The conjecture is that true 
attacks will be delivered in packets that contain many more n-grams not observed in training than “normal” packets 
used to train the model. After all, a true zero-day attack must deliver data to a server application that has never been 
processed by that application before. Hence, the data exercising the vulnerability is very likely to be an n-gram of 
some size never before observed. By modeling a mixture of n-grams, we increase the likelihood of observing these 
anomalous grams.   
 
To validate this conjecture, we compared the ROC curves of the frequency-based approach and the binary-based 
approach for the same datasets (representing equivalent training times). We collected the web traffic of two CS de-
partmental web servers, www and www1; the former serves the department webpage, while the latter serves personal 
web pages. Traffic was collected for two different time periods: a period of sniffed traffic from the year 2004 and 
another dataset sniffed in 2006. The 2004 datasets (www-04 and www1-04) contain 160 hours of traffic; the 2006 
datasets (www-06 and www1-06) contain about 560 hours. We tested for the detection of several real worms and 
viruses: CodeRed, CodeRed II, WebDAV, Mirela, a php forum attack, and a worm that exploits the IIS Windows 
media service, the nsiislog.dll buffer overflow vulnerability (MS03-022). These worm samples were collected from 
real traffic as they appeared in the wild, from both our own dataset and from a third-party.  
 
For the first experiment, we used 90 hours of www1-06 for training and 72 hours for testing. (Similar experiments 
on the other datasets display similar results, and we skip them here for brevity.) Both the detection rate and false 
positive rate are calculated based on packets with payloads; non-payload (e.g., control) packets were ignored. Some 
attacks have multiple packets; while fragmentation can result in a few packets appearing normal, we can still guar-
antee reliable attack detection over the entire set of packets. For example, for the IIS5 WebDAV attack, 5-grams 
detect 24 out of 25 packets as being anomalous. The only missed packet is the first packet, which contains the buffer 
overflow string “SEARCH /AAA……AA”; this is not the key exploit part of the attack. 
 
The binary-based approach yields significantly better results than the frequency-based approach. When a 100% de-
tection rate is achieved for the packet traces analyzed, the false positive rate of the binary-based approach is at least 
one order of magnitude less than the frequency-based approach. The relatively high false positive rate of the fre-
quency-based approach suggests much more training is needed to capture accurate statistical information to be com-
petitive. In addition, the extremely high false positive rate of the 3-gram frequency-based approach is due to the fact 
that the 3-grams of the php attack all appear frequently enough to make it hard to distinguish them from normal con-
tent packets. On the other hand, the binary-based approach used in Anagram results in far better performance. The 
0.01% false positives average to about 1 alert per hour for www1 and about 0.6 alerts per hour for www. The result 
also shows that 5-grams and 6-grams give the best result, and we’ve found this to be true for others as well.  
 
As previously stated, Anagram may easily model a mixture of different n-grams simply by storing these in the same 
Bloom filter. However, for larger n-grams additional training may be required; our modeling approach allows us to 
estimate when the sensor has been sufficiently trained.   
 
One significant issue when modeling with higher order n-grams is memory overhead. By leveraging the binary-
based approach, we can use more memory-efficient set-based data structures to represent the set of observed n-
grams. In particular, the Bloom filter (BF) is a convenient tool to represent the binary model. Instead of using n bytes 
to represent the n-gram, or even 4 bytes for a 32-bit hash of the n-gram, the Bloom filter can represent a set entry 
with just a few bits, reducing memory requirements by an order of magnitude or more. 
  
A Bloom filter is essentially a bit array of m bits, where any individual bit i is set if the hash of an input value, mod 
m, is i. As with a hash table, a Bloom filter acts as a convenient one-way data structure that can contain many items, 
but generally is orders- of-magnitude smaller. Operations on a Bloom filter are O(1), keeping computational over-
head low. A Bloom filter contains no false negatives, but may contain false positives if collisions occur; the false 
positive rate can be optimized by changing the size of the bit array and by using multiple hash functions (and requir-
ing all of them to be set for an item to be verified as present in the Bloom filter; in the rare case where one hash 
function collides between two elements, it’s highly unlikely a second or a third would also simultaneously collide). 
By using universal hash functions, we can minimize the probability of multiple collisions for n-grams in one packet 
(assuming each n-gram is statistically independent); the Bloom filter is therefore safe to use and does not negatively 
affect detection accuracy.  
 

http://www.The
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STAND: Ideally, an anomaly detector should achieve 100% detection accuracy, i.e., true attacks are all identified, 
with 0% false positives. Reaching this ideal is very hard due to a number of problems. First, the generated model can 
under-fit the actual normal traffic. Under-fitting means that the AD sensor is overly general: it will flag traffic as 
“normal” even if this traffic does not belong to the true normal model. As a result, attackers have sufficient space to 
disguise their exploit, thus increasing the amount of “false negatives” produced by the sensor. Second, and equally 
as troubling, the model of normal traffic can over-fit the training data: non-attack traffic that is not observed during 
training may be regarded as anomalous. Over-fitting can generate an excessive amount of false alerts or “false posi-
tives.” Third, unsupervised AD systems often lack a measure of ground truth to compare to and verify against. The 
presence of an attack in the training data “poisons” the normal model, thus rendering the AD system incapable of 
detecting future or closely related instances of this attack. As a result, the AD system may produce false negatives. 
This risk becomes a limiting factor of the size of the training set. Finally, even in the presence of ground truth, creat-
ing a single model of normal traffic that includes all non-attack traffic can result in under-fitting and over-
generalization.  
 
These problems appear to stem from a common source: the quality of the normality model that an AD system em-
ploys to detect abnormal traffic. This single, monolithic normality model is the product of a training phase that tradi-
tionally uses all the traffic from a non-sanitized training data set. Our goal in our work was to extend the AD train-
ing phase to successfully sanitize training data by removing both attacks and non-regular traffic, thereby computing 
a more accurate anomaly detection model that achieves both a high rate of detection and a low rate of false positives. 
To that end, we generalized the notion of training for an AD system. Instead of using a normal model generated by a 
single AD sensor trained on a single large set of data, we use multiple AD instances trained on small data slices. 
This process produces multiple normal models, which we call micro-models, by training AD instances on small, 
disjoint subsets of the original traffic dataset. Each of these micro- models represents a very localized view of the 
training data. Armed with the micro-models, we are now in a position to assess the quality of our training data and 
automatically detect and remove any attacks or abnormalities that should not be considered part of the normal mod-
el.  
 
The intuition behind our approach is based on the observation that in a training set spanning a sufficiently large time 
interval, an attack or an abnormality will appear only in small and relatively confined time intervals. To identify 
these abnormalities, we test each packet of the training data set against the produced micro-models. Using a voting 
scheme, we can determine which packets to consider abnormal and remove from our training set. In our analysis, we 
explored the efficiency and tradeoffs of both majority voting and weighted voting schemes. The result of our ap-
proach is a training set which contains packets that are closer to what we consider the “normal model” of the appli-
cation’s I/O streams.  
 
This sanitized training set enables us to generate a single sanitized model from a single AD instance. This model is 
very likely free of both attacks and abnormalities. As a result, the detection performance during the testing phase 
should improve. Our experimental results show a 5-fold increase of the average detection rate. Furthermore, data 
that was deemed abnormal in the voting strategy is used for building a different model, which we call the abnormal 
model. This model is intended to represent traffic that contains attacks or any data that is not commonly seen during 
a normal execution of the protected system.  
 
Our initial assumptions do not hold when the training set contains persistent and/or targeted attacks, or there exist 
other anomalies that persist throughout the majority of the training set. To defend against such attacks, we proposed 
a novel, fully distributed collaborative sanitization strategy. This strategy leverages the location diversity of collabo-
rating sites to exchange information related to abnormal data that can be used to clean each site’s training data set. 
Consequently, our work introduces a two-phase training process: initially, we compute the AD models of “normal” 
and “abnormal” locally from the training set at each site. In the second phase, we distribute the “abnormal” models 
between sites, and we use this information to re-evaluate and filter the local training data set. If data deemed normal 
by the local micro-models happens to belong to a remote “abnormal” model, we inspect or redirect this data to an 
oracle. Even if the identities of the collaborating sites become known, attacking all the sites with targeted or blend-
ing attacks is a challenging task. The attacker will have to generate mimicry attacks against all collaborators and 
blend the attack traffic using the individual sites’ normal data models.  
 
Our evaluation considered two different defense configurations involving AD sensors. In the first case, we measured 
the increase in detection performance for a simple AD-based defense system when we use the new training phase to 
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sanitize the training set. As a second scenario, we assumed that a latency-expensive oracle can help classify “suspect 
data” and differentiate between false positives (FP) and true positives (TP). In practice, our oracle consists of a 
heavily instrumented host-based “shadow” server system  that determines with very high accuracy whether a packet 
contains an attack. By diverting all suspect data to this oracle, we can identify true attacks by observing whether the 
shadow sensor emits an alert after consuming suspicious data. This high accuracy, however, comes at the cost of 
greatly increased computational effort making the redirection of all traffic to the shadow sensors infeasible.  
 
Many papers comment on anomaly detectors having too high a false positive rate, thus making them less than ideal 
sensors. In light of the above scenario, we see such comments as the “false false positive problem,” as our shadow 
sensor architecture allows an automated process (instead of a human operator) to consume and vet FPs. We used this 
scenario to demonstrate that failure to substantially reduce the FP rate of a network AD sensor does not render the 
sensor useless. By using a host-based shadow sensor, false positives neither damage the system under protection nor 
flood an operational center with alarms. Instead, the shadow sensor processes both true attacks and incorrectly clas-
sified packets to validate whether a packet signifies a true attack. These packets are still processed by the shadowed 
application and only cause an increased delay for network traffic incorrectly deemed an attack.  
 
Distributed Network Anomaly Detection (DNAD): Existing “distributed” intrusion detection systems largely suffer 
from two fundamental flaws. First, they do not address scalability issues in a meaningful fashion. Most systems are 
either completely centralized, making them prone to denial-of-service attacks or reliability issues, or completely 
decentralized, making effective alert dissemination problematic as significant replication is needed, increasing the 
latency and decreasing the reliability of alert exchange. Second, they do not adequately address privacy require-
ments. Organizations are reluctant to collaborate against threats when sensitive network topology or network traffic 
could be exchanged. The few existing approaches that address this problem do so by largely scrubbing data and 
making peers completely anonymous. This approach is inadequate, because it eliminates meaningful data correlation 
and allows for little or no resiliency to unscrupulous collaborators, who may flood the network with noise to try and 
reduce the effectiveness of cross-organization collaboration. Here, we describe a new Collaborative Intrusion Detec-
tion System (CIDS) architecture that works with existing single-enclave IDS sensors and implements an effective 
distribution, aggregation, and correlation layer to existing IDS sensors to address both of these problems, enabling a 
feasible intrusion alert-sharing infrastructure for the first time. The aspects to this architecture include the following:  
 
1) We employ Hierarchical Distributed Hash Tables, or HDHTs, that aim to provide a decentralized alert dissemina-
tion infrastructure with the introduction of node hierarchies to enable more effective scaling. The key differentiating 
concept to enabling HDHTs for intrusion detection is the creation and partitioning of intrusion alert keys to deter-
mine both “cluster” and “node” identifiers, where the node is local to the aforementioned cluster. This enables broad 
decentralization, but also avoids building a very large, flat network, which dramatically increases the latency of alert 
dissemination. We also propose the use of multiple hierarchies with a collaborating network, i.e., all nodes are in-
volved in multiple federations, each with different node topology, and disseminate alerts in each federation. This 
provides resiliency in the case of network failure or partitioning, and provides an inherent verification mechanism to 
determine erratic or uncooperative nodes who may be trying to subvert the collaboration network by (selectively or 
completely) withholding information as it is routed. HDHTs also naturally enable the use of hierarchical aggregation 
tools, which can be used to further reduce alert rates and, correspondingly, communication overhead.  
 
2) We include the notion of privacy-preserving transforms to convert potentially sensitive alert information into in-
termediate structures that offer effective correlation without yielding secrets to other honest-but-curious or malicious 
participants. These transforms, based on hashing principles and use of Bloom filters, are fast to generate and com-
pact, enabling quick message exchange when large alert volumes are generated.  
 
3) The architecture supports the use of signatures for accountability, enabling what we term anonymous differentia-
bility—that is, while the actual identity of participants should not be revealed, nodes should be able to effectively 
distinguish between alert sources and effectively decide whether to trust a particular source or not. These signatures 
are employed in an Onion routing-style mechanism to ensure that intermediate nodes in the decentralized framework 
do not pollute data that are replicated throughout the network.  
 
The inclusion of these three key features enables a comprehensive platform for effective Collaborative Intrusion 
Detection. 
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POLYMORPH: Conventional wisdom has held that attackers retain a significant advantage by using polymorphic 
tactics to disguise their shell-code. To the best of our knowledge, however, there exists no quantitative analysis of 
this advantage. Our work in this space provides empirical evidence to support this folk wisdom and helps improve 
understanding of the polymorphic shell-code problem in the following ways:  
 
• We illustrate the ultimate futility of string–based signature schemes by showing that the class of n-byte decoder 
samples spans n-space. Although our results should not be interpreted as a call for the immediate abandonment of all 
signature–based techniques, we believe there is a strong case for investigating other protection paradigms.  
 
• As a corollary, we showed that given any normal statistical model, there is a significant probability that an attacker 
can craft successful targeted attacks against it.  
 
• We proposed metrics to gauge the relative strengths of polymorphic engines, and we use these to examine some of 
the current state-of-the-art engines. We believe our methodology is novel and helps provide some insight in a space 
that has generally been lacking in quantitative analysis.  
 
• We showed how to augment existing polymorphic engines and demonstrate this process by presenting our imple-
mentation of a proof-of-concept engine.  
 
The problem we address can be stated as follows:  
 
PROBLEM DEFINITION Given n bytes, there can be a set of  256n possible strings. The specific class of x86 
code of length n that corresponds to decoders is a subset of this superset, i.e., spanning a subspace within this larger 
space. How difficult is it to model this subspace — in other words, what is the magnitude of this span? What are 
polymorphic threats we can expect to see in the immediate future? Finally, what are the theoretical limits?  
 
We combined a number of methods to answer this question. First, we introduced a set of measures to assess the ran-
domness of a population of samples. We employed these measures to analyze a pool of decoders generated by exist-
ing polymorphic engines. Next, we demonstrated our improvements to existing polymorphic techniques. Finally, we 
analyzed the theoretical limits of polymorphism by examining a fixed-size space of n-bytes. We explored this space 
using efficient genetic algorithms to characterize the span of all x86 code that exhibits polymorphic behavior. Along 
the way, we explained why signature-based detection currently works, why it may work in the short term, and why it 
will progressively become less valuable. We also discovered that shell-code behavior varies enough to not only 
present a challenge for signature systems, but also presents a significant challenge for statistical approaches to model 
malcode.  
 
Our results show that the span of polymorphic code likely reaches across n-space. The challenge of signature–based 
detection is to model a space on the order of O(2^8·n) signatures to catch potential attacks hidden by polymorphism. 
To cover thirty-byte decoders requires O(2^240) potential signatures; for comparison there exist an estimated 2^80 
atoms in the universe. We would much sooner run out of atoms than attackers run out of decoders. Current signature 
schemes work only because of advances in rapid isolation and generation of signatures. This strategy may work for 
the short term; however, our work indicates that defenders cannot capture the initiative from the attacker under this 
reactive defense strategy. Somewhat troubling is the additional implication that regardless of what a normal model 
of traffic for a particular site may be, there exists a certain probability that a range of decoders would fall within the 
span of that normal model because sequences which exhibit polymorphic behavior span most of n-space.  
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Appendix A: Deliverables (software, papers, theses, talks) 
 

Theses 
 
  "Integrity Postures for Software Self-Defense" 
  Michael E. Locasto, Dept. of Computer Science, Columbia University, December 2007 
 
 "Software Self-healing Using Error Virtualization" 
 Stelios Sidiroglou, Dept. of Computer Science, Columbia University, May 2008 
 

Conference Publications 
 
 "Casting out Demons: Sanitizing Training Data for Anomaly Sensors" 
 Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto, Salvatore J. Stolfo, and Angelos  
 D. Keromytis. In Proceedings of the IEEE Symposium on Security & Privacy, pp. 81 -  
 95. May 2008, Oakland, CA. (Acceptance Rate: 11.2%) 
 
 "On the Infeasibility of Modeling Polymorphic Shellcode" 
 Yingbo Song, Michael E. Locasto, Angelos Stavrou, Angelos D. Keromytis, and  
 Salvatore J. Stolfo. In Proceedings of the 13th ACM Conference on Computer and 
 Communications Security (CCS), pp. 541 - 551. October/November 2007, Alexandria,  
 VA. Also available as Columbia University Computer Science Department Technical  
 Report CUCS-007-07. (Acceptance rate: 18.1%) 
 
 "Defending Against Next Generation Attacks Through Network/Endpoint Collaboration  
   and Interaction" 
 Spiros Antonatos, Michael E. Locasto, Stelios Sidiroglou, Angelos D. Keromytis, and  
 Evangelos Markatos. In Proceedings of the 3rd European Conference on Computer  
 Network Defense (EC2ND). October 2007, Heraclion, Greece. (Invited paper)  
 
 "Characterizing Self-healing Software Systems" 
 Angelos D. Keromytis. In Proceedings of the 4th International Conference on   
 Mathematical Methods, Models and Architectures for Computer Networks Security  
 (MMM-ACNS), pp. 22 - 33. September 2007, St. Petersburg, Russia. (Invited paper) 
 
 "From STEM to SEAD: Speculative Execution for Automated Defense" 
 Michael E. Locasto, Angelos Stavrou, Gabriela F. Cretu, and Angelos D. Keromytis. In   
 Proceedings of the USENIX Annual Technical Conference, pp. 219 - 232. June 2007,  
 Santa Clara, CA. An older version is available as Columbia University Computer Science  
 Department Technical Report CUCS-004-07. (Acceptance rate: 18.75%) 
 
 "Using Rescue Points to Navigate Software Recovery (Short Paper)" 
 Stelios Sidiroglou, Oren Laadan, Angelos D. Keromytis, and Jason Nieh. In Proceedings  
 of the IEEE Symposium on Security & Privacy, pp. 273 - 278. May 2007, Oakland, CA.  
 (Acceptance rate: 8.3%) 
 
 "Poster Paper: Band-aid Patching" 
 Stelios Sidiroglou, Sotiris Ioannidis, and Angelos D. Keromytis. In Proceedings of the 3rd  
 Workshop on Hot Topics in System Dependability (HotDep), pp. 102 - 106. June 2007,  
 Edinburgh, UK. 
 
 "Data Sanitization: Improving the Forensic Utility of Anomaly Detection Systems" 
 Gabriela F. Cretu, Angelos Stavrou, Salvatore J. Stolfo, and Angelos D. Keromytis. In  
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 Proceedings of the 3rd Workshop on Hot Topics in System Dependability (HotDep), pp.  
 64 - 70. June 2007, Edinburgh, UK. 
 
 "Next Generation Attacks on the Internet" 
  Evangelos Markatos and Angelos D. Keromytis. In Proceedings (electronic) of the EU- 
 US Summit Series on Cyber Trust: Workshop on System Dependability & Security, pp.  
 67 - 73. November 2006, Dublin, Ireland. (Invited paper) 
 
 "A Model for Automatically Repairing Execution Integrity" 
 Michael E. Locasto, Gabriela F. Cretu, Angelos Stavrou, and Angelos D. Keromytis.  
 Columbia University Computer Science Department Technical Report CUCS-005-07,  
 January 2007. 
 
 "Speculative Execution as an Operating System Service" 
 Michael E. Locasto and Angelos D. Keromytis. Columbia University Computer Science  
 Department Technical Report CUCS-024-06, May 2006. 
 
 "Quantifying Application Behavior Space for Detection and Self-Healing" 
 Michael E. Locasto, Angelos Stavrou, Gabriela F. Cretu, Angelos D. Keromytis, and  
 Salvatore J. Stolfo. Columbia University Computer Science Department Technical Report  
 CUCS-017-06, April 2006. 
 
 "Bloodhound: Searching Out Malicious Input in Network Flows for Automatic Repair  
   Validation" 
 Michael E. Locasto, Matthew Burnside, and Angelos D. Keromytis. Columbia University  
 Computer Science Department Technical Report CUCS-016-06, April 2006. 
 

Talks (other than those associated with the papers listed above) 
 
 "Self-healing Software Systems", Computer Science Department, Athens University of  
 Economics and Business (AUEB), Athens, Greece, May 2008. 
 
 "Using Instruction Set Randomization, and its Limitations", AFOSR Invitational  
 Workshop on Homogeneous Enclave Software vs. Heterogeneous Enclave Software,  
 October 2007. 
 
 "Data Sanitization: Improving the Forensic Utility of Anomaly Detection Systems",  
 Institute of Computer Science (ICS), Foundation of Research and Technology Hellas  
 (FORTH), July 2007. 
 
 "Application Communities: A Collaborative Approach To Software Security", IBM  
 Research, July 2007. 
 
 "Application Communities: A Collaborative Approach To Software Security,'' CS  
 Department, Athens University of Economics and Business (AUEB), April 2007 
 
 "Self-Healing Software", National Institute of Advanced Industrial Science and  
 Technology (AIST), Japan, April 2007. 
 "Toward Self-healing Software,'' Institute for Infocomm Research, Singapore, March 2007 
 
 "Application Communities: A Collaborative Approach To Software Security,'' CS  
 Department, Stony Brook University, Stony Brook NY, November 2006 
 
 "Using Virtual Machines to Combat Malware", National Security Research Institute  
 (NSRI), Republic of Korea, November 2006. 
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 "Application Communities: A Collaborative Approach to Software Security", Computer  
 Science Department, Johns Hopkins University, October 2006. 
 
 "Application Communities: A Collaborative Approach to Software Security", Computer   
 Science Department, University of Toronto, September 2006. 
 
 "Application Communities: A Collaborative Approach To Software Security,'' CS  
 Department, Brooklyn Polytechnic, New York, September 2006 
 
 "Application Communities: A Collaborative Approach to Software Security", Computer  
 Science Department, University of Crete, July 2006. 
 
 "Application Communities,'' Institute for Infocomm Research, Singapore, June 2006 
 

Software 
 
 - Automatic Patch Generation prototype 
 
    This prototype implements the source-code-based APG system, including a web-based 
    GUI. (Delivered in the form of a USB hard drive containing virtual machine images 
    configured to run the software.) 
 
 - FLIPS 
 
   This prototype implements the artificial software diversification system using Instruction 
   Set Randomization (ISR) through a selective code-slice emulator. In addition, the system 
   includes a signature generator and an anomaly detector that is integrated with the ISR 
   system to create signatures and train AD models for attack characterization. 
 
 - Anagram 
 
   This prototype implements our Bloom Filter-based anomaly detector. (Delivered to 
   the NSA, contact person: Ray Roy.) 
 
 - STAND 
 
  This prototype implements our anomaly detector training-set sanitization scheme.  
  (Delivered to the NSA, contact person: Ray Roy.) 
 
 - Better Patch Management 
 
   This prototype implements our system for in-situ testing of security patches through 
   dynamic replica creation and management.   
 




